
Simulink® Compiler™
Getting Started Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Compiler™ Getting Started
© COPYRIGHT 2020–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2020 Online only New for Version 1.0 (Release 2020a)
September 2020 Online only Revised for Version 1.1 (Release 2020b)
March 2021 Online only Revised for Version 1.2 (Release 2021a)
September 2021 Online only Revised for Version 1.3 (Release 2021b)
March 2022 Online only Revised for Version 1.4 (Release 2022a)
September 2022 Online only Revised for Version 1.5 (Release 2022b)
March 2023 Online only Revised for Version 1.6 (Release 2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Simulink Compiler Getting Started
1

Simulink Compiler Product Description . 1-2

Simulink Compiler Workflow Overview . 1-3
Simulation Pacing in Rapid Accelerator Mode . 1-5

Toolboxes Supported by Simulink Compiler . 1-7

Create and Deploy a Script with Simulink Compiler 1-9
Prepare the Model . 1-9
Write the Script to Deploy . 1-9
Compile Script for Deployment . 1-10
Run the Deployed Script . 1-10

Export Simulink Models to Functional Mock-up Units 1-11
Export Models . 1-11
Export a Simulink Model . 1-14
Examples For Different Workflows . 1-16

Export Standalone FMU with External C++ Code 1-17

Export Simulink Model with Protected Model and FMU Import Block to
Standalone FMU . 1-24

Export Simulink Model to Standalone FMU with User Specified Files and
Archived Project with Harness Model . 1-37

Export Simulink Model to Standalone FMU with Source Code 1-49

iii

Contents

Simulink Compiler Getting Started

1

Simulink Compiler Product Description
Share simulations as standalone executables, web apps, and Functional Mockup Units
(FMUs)

Simulink® Compiler™ enables you to share Simulink simulations as standalone executables. You can
build the executables by packaging the compiled Simulink model and the MATLAB® code used to set
up, run, and analyze a simulation. Standalone executables can be complete simulation apps that use
MATLAB graphics and UIs designed with MATLAB App Designer. To cosimulate with an external
simulation environment, you can generate standalone Functional Mockup Unit (FMU) binaries that
adhere to the Functional Mockup Interface (FMI) standard.

To provide browser-based access to your deployed simulation, you can create a web app and host it
with MATLAB Web App Server™. Simulink simulations can be packaged into software components for
integration with other programming languages (with MATLAB Compiler SDK™). Large-scale
deployment to enterprise systems is supported through MATLAB Production Server™.

To generate C and C++ source code from Simulink, use Simulink Coder™.

1 Simulink Compiler Getting Started

1-2

Simulink Compiler Workflow Overview
Simulink Compiler lets you share simulations as standalone applications. Simulink Compiler extends
the capabilities of MATLAB Compiler to allow Simulink sim command and associated Simulink
functions in the deployed script or application. For more information about MATLAB Compiler, see
MATLAB Compiler documentation.

The application users who use these deployed applications are not expected to interact with the
Simulink model directly. The Simulink user provides the application user with a tool that allows them
to explore task-specific scenarios without looking at the underlying model that represents the
dynamic system. The application users can change model parameters and simulation inputs, and
record and analyze simulation outputs.

 Simulink Compiler Workflow Overview

1-3

To develop an application, the Simulink user:

1 Prepares the Simulink model to be compatible with Simulink Compiler, such as checking that the
model simulates correctly in rapid accelerator mode. For limitations of rapid accelerator mode
and Simulink Compiler, see “Rapid Accelerator Limitations”.

Note For information on toolboxes supported by Simulink Compiler, see “Toolboxes Supported
by Simulink Compiler” on page 1-7.

1 Simulink Compiler Getting Started

1-4

2 Creates an application that simulate the model using the sim command, in a script or an App
designer app.

3 Configures the script or the app for deployment by using
simulink.compiler.configureForDeployment function. The
simulink.compiler.configureForDeployment function adapts the model to run in Rapid
Accelerator mode.

4 Creates a standalone application using the mcc command or the deploytool app.
5 Shares the standalone application.

To use the application, the application user:

1 Installs MATLAB Runtime environment for the deployed application.
2 Uses the deployed application.

The following Simulink functions and classes are deployable:

Functions:

• sim
• start_simulink

Classes:

• Simulink.SimulationInput and its method setVariable
• Simulink.SimulationOutput
• Simulink.SimulationData.Dataset

Simulation Pacing in Rapid Accelerator Mode
Using simulation pacing in rapid accelerator mode allows you to use simulation pacing with the
deployed standalone executables. You can slow down the simulation of your deployed executable to
better visualize simulations and understand system behavior.

To use simulation pacing in rapid accelerator mode, or in the deployed executable, you can use the
parameter EnablePacing. To use pacing for a model with the name modelName, use this:

% Enable pacing
set_param('modelName','EnablePacing','on')

%Set pacing rate
set_param('modelName','PacingRate',0.5)

Simulation pacing is turned off by default. The EnablePacing and the PacingRate parameters are
saved with the model. Use of neither parameters dirties the model. PacingRate must be a non-zero
positive integer.

If the model contains a Simulation Pacer block (Aerospace Blockset™), Simulink gives a warning
during simulation in the Diagnostic Viewer or the MATLAB prompt. Simulation pacing takes place
according to the EnablePacing and PacingRate parameters configuration. The simulation pace set
on Simulation Pacer block is ignored.

 Simulink Compiler Workflow Overview

1-5

Limitations

Simulation pacing is supported in command-line simulations and deployed mode only. In rapid
accelerator mode, simulation pacing is not supported in the menu options in the Simulink Editor.

See Also
simulink.compiler.configureForDeployment | simulink.compiler.genapp |
Simulink.SimulationInput | mcc | deploytool | sim

Related Examples
• “Create and Deploy a Script with Simulink Compiler” on page 1-9
• “Export Simulink Models to Functional Mock-up Units” on page 1-11
• “Toolboxes Supported by Simulink Compiler” on page 1-7

1 Simulink Compiler Getting Started

1-6

Toolboxes Supported by Simulink Compiler
Simulink Compiler supports the following toolboxes:

• Aerospace Blockset.
• Audio Toolbox™.
• Automated Driving Toolbox™.
• AUTOSAR Blockset.
• Communications Toolbox™.
• Computer Vision Toolbox™.
• Control System Toolbox™.
• Deep Learning Toolbox™: All blocks created from gensim that support code generation.
• DSP System Toolbox™.
• Fixed-Point Designer™: Fixed-point data point is supported.
• Fuzzy Logic Toolbox™.
• Model Predictive Control Toolbox™.
• Navigation Toolbox™.
• Phased Array System Toolbox™.
• Powertrain Blockset™.
• Robotics System Toolbox™.
• Simscape™.
• Simscape Driveline™.
• Simscape Electrical™.
• Simscape Fluids™.
• Simscape Multibody™.
• Simulink.
• Simulink Control Design™.
• Simulink Design Optimization™.
• Stateflow®.
• Symbolic Math Toolbox™.
• System Identification Toolbox™.
• Vehicle Dynamics Blockset™.
• Vehicle Network Toolbox™.
• Vision HDL Toolbox™.

Note Simulink Compiler supports all the blocks that support code generation in these toolboxes. You
can use any blocks like the Current Measurement block in Simulink Compiler once you make sure to
be able to run a model in Rapid Accelerator mode. Among these toolboxes, the prebuilt apps, UIs, and
functions, and blocks that don’t support code generation are not supported by Simulink Compiler.

 Toolboxes Supported by Simulink Compiler

1-7

See Also

Related Examples
• “Create and Deploy a Script with Simulink Compiler” on page 1-9
• “Export Simulink Models to Functional Mock-up Units” on page 1-11

1 Simulink Compiler Getting Started

1-8

Create and Deploy a Script with Simulink Compiler
In this section...
“Prepare the Model” on page 1-9
“Write the Script to Deploy” on page 1-9
“Compile Script for Deployment” on page 1-10
“Run the Deployed Script” on page 1-10

In this example, you prepare a model to work with Simulink Compiler, develop and compile the script,
and then deploy it as a standalone application.

Prepare the Model
Simulink Compiler uses rapid accelerator simulation targets to generate an executable to submit a
Simulink model. Simulink Compiler only supports models which can run in rapid accelerator mode. To
set the simulation mode of the model to rapid accelerator, use the model parameter
'SimulationMode' with SimulationInput object. To enable simulation deployment of the model,
your model must be supported by the Rapid Accelerator mode correctly.

Simulink Compiler only supports sim function syntax that takes Simulink.SimulationInput
object and returns Simulink.SimulationOutput object.

If callbacks are present in the model, they are called during the build time of the application.
However, once the application or the script is deployed, these callbacks are not invoked.

Write the Script to Deploy
After preparing the model, write the script that you would like to deploy. In this example, we use a
model and change one of the tunable parameters in the script.

In the MATLAB Editor, create a function deployedScript. This example uses the model
sldemo_suspn_3dof. In this function, create a Simulink.SimulationInput object for the model,
sldemo_suspn_3dof and change the value of Mb with the setVariable method of the
Simulink.SimulationInput object. To ensure that the model runs in rapid accelerator mode, set
the SimulationMode to Rapid through the setModelParameter method of the
Simulink.SimulationInput object or use the simulink.compiler.configureForDeployment
function as shown below.

The variables modified in the simulations can be in the base workspace or in the top model
workspace. If your model uses external input variables, that is, you can not use the method
in.setExternalInput of the Simulink.SimulationInput. External input variables must be in
the MATLAB workspace before packaging for deployment.

function deployedScript()
 in = Simulink.SimulationInput('sldemo_suspn_3dof');
 in = in.setVariable('Mb', 1000);
 in = simulink.compiler.configureForDeployment(in);
 out = sim(in);
end

Save the function as a deployedScript.m.

 Create and Deploy a Script with Simulink Compiler

1-9

Compile Script for Deployment
Before compiling the script that you want to deploy, ensure that the files for the model and script, in
this case sldemo_suspn_3dof and the deployedScript.m, are included on the MATLAB search
path. To compile the script, use the mcc command with the script name. To learn more about the mcc
command, see mcc.

mcc -m deployedScript.m

Troubleshooting Tips

Simulink Compiler automatically packages the dependencies in the model and the deployed scripts. If
the command mcc cannot find a dependency, you might see errors.

• If you see the error "Unable to resolve the name Simulink.SimulationInput", check that the
model is on the path.

• If the dependent files are located in another directory, attach them by using the flag -a. For
example, mcc -m scriptName.m -a myDataFile.dat.

Run the Deployed Script
Install MATLAB Runtime

To run the deployed executable, you need an appropriate runtime environment. To install the
MATLAB Runtime, see https://www.mathworks.com/products/compiler/matlab-runtime.html.

Run the Deployed Application

You can run the deployed application only on the platform that the deployed application was
developed on.

Run the deployed application from the Windows command prompt. Running the deployed application
from the command prompt enables the application to print diagnostic messages in the command
prompt when it encounters errors. These messages can be a helpful tool in troubleshooting the
problem.

See Also
configureForDeployment | Simulink.SimulationInput | mcc | deploytool | sim

Related Examples
• “Deploy an App Designer Simulation with Simulink Compiler”
• “Deploy Simulations with Tunable Parameters”

1 Simulink Compiler Getting Started

1-10

https://www.mathworks.com/products/compiler/matlab-runtime.html

Export Simulink Models to Functional Mock-up Units
Export Models
Export Simulink models to functional mockup unit (FMU) that supports co-simulation in FMI version
2.0. To check that the exported block is still a valid Simulink model, you can also direct the software
to import the FMU back to a Simulink model as part of the export process.

Requirements include:

• Simulink Compiler
• A writable folder into which to place the exported FMU.

Exported models can have:

• Input and output data types: double, int32, boolean, string
• Matrices
• Bus Signals
• Tunable parameters which can be model arguments, base workspace, or data dictionary variables.
• Unit and description.

When you export a model as a standalone FMU, certain metadata from Simulink is also exported with
the FMU. The metadata includes:

• Model description
• Signal unit
• Parameter unit
• Signal description
• Parameter description

Standalone FMU

Simulink models can be exported to standalone co-Simulation FMU in version 2.0. The generated
FMU package contains the following files:

• modelDescription.xml
• model.png (optional)
• binaries\win64\modelname.dll, or binaries\linux64\modelname.so, or binaries

\darwin64\modelname.dylib

You might experience an expected time delay in the exported FMU for co-Simulation mode.

FMU Variables

FMU modelDescription.xml file contains interfacing variables converted from Simulink model:

• Variables with causality=’input’: converted from root Inport block
• Variables with causality=’output’: converted from root Outport block
• Variables with causality=’parameter’: converted from referenced Runtime Tunable

Parameters

 Export Simulink Models to Functional Mock-up Units

1-11

• Independent variable ‘time’

To generate FMU input and output, define root Inport and Outport blocks in Simulink model. The
name of the generated variable is converted from root Inport or Outport block name, by removing
special and blank characters and avoiding duplicates. If input/output signal carries unit information,
it is exported as Unit attribute of the FMU variable. If the input/output block has a non-empty
description information under Block Properties > General , it is exported as Description
attribute of the FMU variable.

The following input and output data types are supported:

• double (Real in FMI)
• int32 (Integer in FMI)
• boolean (Boolean in FMI)
• string (String in FMI)

If model root Inport or Outport block is a non-virtual bus, individual bus elements will be expanded to
variables using structured naming convention (‘.’). If model root Inport or Outport block is array
or matrix,, individual scalar elements will be expanded to variables using array naming convention
(‘[]’).

To export referenced variables as FMU parameter, you can:

• Define a variable.
• Define a Simulink Parameter object.

Ensure that the variable and the parameter object is directly references by tunable parameters of
Simulink blocks. In FMU Export dialog, expand Parameter Details... to configure each parameter.
You can:

• Unselect Exported option to hide a parameter
• Modify Exported Name so the parameter is displayed with a different name on FMU interface.

Do not use special characters and duplicate names.
• Set Unit and Description of FMU parameter variable by clicking on parameter name, and

directly modifying the parameter object

If the FMU parameter is Simulink.Parameter, click the hyperlink to modify the Unit and
Description of the variable.

If FMU parameter is a regular MATLAB variable, clicking the hyperlink opens model explorer. You
can convert MATLAB variable to a Simulink.Parameter so that it can carry Unit and
Description.

Unit and Description of FMU parameter variable cannot be updated directly in FMU Export
dialog. You can configure Unit and Description through model explorer, double-clicking
Simulink.Parameter in base workspace, etc.

The following parameter data types are supported:

• double (Real in FMI)
• int32 (Integer in FMI)
• boolean or logical (Boolean in FMI)

1 Simulink Compiler Getting Started

1-12

If referenced parameter is a struct, individual struct members will be expanded to variables using
structured naming convention (‘.’). If referenced parameter is array or matrix, individual scalar
elements will be expanded to variables using array naming convention (‘[]’).

When a Simulink model with model reference block is exported to FMU, you can also export base
workspace variables, model arguments and instance parameters that are promoted from the sub
model.

On the Simulink toolstrip, under Save, select Export Model to Standalone FMU to view options for
exporting an FMU with internal variables.

FMU Solver

Fixed-step solvers are supported for standalone FMU export. It is recommended to set a fixed
fundamental sample time (Solver > Solver details > Fixed-step size) before exporting the model.
When simulating the standalone FMU in another environment, communication step-size must be an
integral multiple of the fundamental sample time.

FMU Dynamic Library

A generated FMU contains a dynamic library build for the current platform. The default
fmi2TypesPlatform value is used.

All required and optional fmi2 functions defined by FMI standard can be invoked. However, the
following functions have no operation and return fmi2OK immediately:

• Model-Exchange functions
• Functions accessing or serializing FMUstate
• Functions setting or getting input or output derivatives
• Functions querying fmi2DoStep status, or cancelling fmi2DoStep
• Function computing directional derivatives of variables

Save Source Code with FMU Export

You can export a Simulink model to FMU along with C source code. You can check Save Source
Code in the Export Model to FMU Co-Simulation window or use the command
exportToFMU2CS('mdlName','SaveSourceCodeToFMU','on') to export the model to FMU with
C source code.

Note To export a Simulink model to FMU with C source code, install Simulink Coder

 Export Simulink Models to Functional Mock-up Units

1-13

If the Simulink model contains model references with custom data types or fixed-point functions,
exporting FMU with source code may cause an error due to duplicate header files in the
_sharedutils folder. Follow instructions on Generate Shared Utility Code to set the Code
Generation > Interface > Shared Code Placement parameter to 'Shared Location' and
regenerate the FMU.

You can export a Simulink model with a FMU Import blocks as nested standalone FMU. When
exporting a nested FMU, Simulink packs all dependent inner FMUs into the resources/ folder of the
nested FMU. When the nested FMU is instantiated in a simulation environment, all inner FMUs will
share the same callback functions provided by the environment, for example, logger and memory
allocation functions.

Specify Additional Files

While exporting a Simulink to a standalone FMU, you can specify additional files to be included in the
generated FMU, such as resource, DLL etc. The target locations for these files can be:

• <fmuroot>/binaries/<arch>/ – dependent DLLs
• <fmuroot>/resources/ – data files, lookup tables, etc
• <fmuroot>/documentation/ – user provide their own help content

For an example on specifying additional files while exporting a Simulink model, see “Export Simulink
Model to Standalone FMU with User Specified Files and Archived Project with Harness Model” on
page 1-37.

Export Protected Model

You can export a Simulink model that is protected. For an example on exporting protected models,
see “Export Simulink Model with Protected Model and FMU Import Block to Standalone FMU” on
page 1-24.

Limitations

You cannot generate FMU from a Simulink model, due to these limitations:

• Variable-step solvers are not supported.
• Non-zero simulation start time is not supported.

Export a Simulink Model
Use the Export Dialog Box

Export the vdp example using the Simulink toolstrip: Simulation > Save > Standalone FMU

1 Open the model vdp
2 In the Simulink Editor, navigate to Simulation > Save > Standalone FMU.
3 In Simulink Editor, select Save > Export to > FMU Co-Simulation.
4 In the export dialog box, specify the path to export the FMU.

1 Simulink Compiler Getting Started

1-14

5 Click Create

By default, Simulink creates the FMU and a harness model with its dependencies stored in a MAT
file. It then packs them into archived project (.mlproj). You can change the behavior by setting
Contents option to Standalone FMU.

 Export Simulink Models to Functional Mock-up Units

1-15

Use the Programmatic Interface

• Export the vdp example to an FMU using the default exportToFMU2CS function. This command
creates the FMU file modelName.fmu. By default, the command also creates a Simulink model
modelName_fmu.slx, that contains an FMU Co-Simulation block with the original model. Create
this model if you want to check the integrity of the exported FMU.

load_system('vdp')
set_param('vdp', 'SolverType', 'Fixed-step')
exportToFMU2CS('vdp')

• Export the vdp example to an FMU using the exportToFMU2CS function, but do not create a
Simulink model. This command creates the FMU file modelName.fmu.

load_system('vdp')
set_param('vdp', 'SolverType', 'Fixed-step')
exportToFMU2CS('vdp','CreateModelAfterGeneratingFMU','off')

• Export the vdp example to an FMU using the exportToFMU2CS function. Create a model for the
FMU and use an image of the original model as the block icon. This command creates the FMU
file, modelName.fmu and a Simulink model with an FMU Co-Simulation block whose block icon is
the original model.

exportToFMU2CS('vdp','AddIcon','snapshot')

Examples For Different Workflows
The examples below illustrate how to use FMU export for all different scenarios:

• “Export Simulink Model to Standalone FMU”
• “Export Standalone FMU with External C++ Code” on page 1-17
• “Export Simulink Model with Protected Model and FMU Import Block to Standalone FMU” on

page 1-24
• “Export Simulink Model to Standalone FMU with User Specified Files and Archived Project with

Harness Model” on page 1-37
• “Export Simulink Model to Standalone FMU with Source Code” on page 1-49

See Also
exportToFMU2CS | configureForDeployment | Simulink.SimulationInput | mcc |
deploytool | sim

Related Examples
• “Deploy Simulations with Tunable Parameters”
• “Deploy an App Designer Simulation with Simulink Compiler”
• “Simulation Callbacks for Deployable Applications”

1 Simulink Compiler Getting Started

1-16

Export Standalone FMU with External C++ Code

This example shows how to import external C++ code into Simulink® model using S-Function
Builder and export it to a standalone FMU. S-Function Builder block lets user import C/C++ code into
Simulink Semantic by building an S-function wrapper for external code. This example demonstrates
this process in a phased approach by implementing a C++ multiply class, integrating C++ code with
S-Function Builder, and exporting the model as a standalone FMU.

Implement Multiply Class with C++ Code

The following code implements a class multiply to be integrated into Simulink model. Class multiply
takes a gain value in the constructor and multiplies it with an input value when the user calls member
function double multiply::apply(double). The following implementation can be found in include/ and
src/ directory.

// multiply class header, the following code is defined in include/multiply.hpp

class EXPORT multiply {
public:
 multiply(double init);
 ~multiply() = default;

 double apply(int val);
private:
 double gain;
};

// multiply class source, the following code is defined in src/multiply.cpp

#include "multiply.hpp"

multiply::multiply(double init) {
 gain = init;
}

double multiply::apply(double val) {
 return val * gain;
}

Import External C++ Code with S-Function Builder

This section shows the process to integrate external C++ code into Simulink model using S-function
Builder block:

• Open Simulink model with an S-Function Builder block.
• Instantiate class multiply in S-Function Output function.
• Add C++ code path to S-Function Builder block Libraries Table.

 Export Standalone FMU with External C++ Code

1-17

% Open example model with S-Function Builder block
open_system('FMUExportWithExternalCPP');

% Open S-Function Builder block dialog
open_system('FMUExportWithExternalCPP/S-Function Builder');

Use S-Function Builder block to include multiply.hpp and instantiate C++ class multiply in
corresponding wrapper functions. The wrapper functions below instantiate and destroy an instance of
class multiply in void cppwrapper_Start_wrapper(const real_T*, const int_T, void**) and void
cppwrapper_Outputs_wrapper(const real_T*, real_T*, const real_T*, const int_T, void**). S-Function
Builder block uses a dialog parameter defined in Parameter Table to instantiate an instance of class
multiply and creates a PWork to store the pointer.

// add the following code to include header
#include "multiply.hpp"

// add the following code to void cppwrapper_Start_wrapper(const real_T*, const int_T, void**)
// the code below takes parameter from S-Function Builder block dialog to instantiate class multiply and store it in a PWork vector
 real_T val = p0[0];
 multiply* mulPtr = new multiply(val);

1 Simulink Compiler Getting Started

1-18

 pW[0] = mulPtr;

// add the following code to void cppwrapper_Outputs_wrapper(const real_T*, real_T*, const real_T*, const int_T, void**)
// gain input value
 multiply* mulPtr = static_cast<multiply*>(pW[0]);
 y0[0] = mulPtr->apply(u0[0]);

// add the following code to void cppwrapper_Terminate_wrapper(const real_T*, const int_T, void**)
// instance of class multiply is destroy when simulation terminates
 multiply* mulPtr = static_cast<multiply*>(pW[0]);
 delete mulPtr;

A complete example code is shown below:

 Export Standalone FMU with External C++ Code

1-19

S-Function Builder block requires the include and source directory to build external C++ code. User
can define C++ file path and entry in Libraries table of S-Function builder and specify a target
language from the Language setting combobox. For S-Function Bluilder block reference, please see:
Create an S-Function Builder Block and Specify Settings.

In this example, we add the following path to S-Function Builder Libraries Table. Click Build button
on the S-Function Builder dialog to build the code.

1 Simulink Compiler Getting Started

1-20

https://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html

% add c++ source and header to library table
handle = getSimulinkBlockHandle('FMUExportWithExternalCPP/S-Function Builder');
Simulink.SFunctionBuilder.add(handle,"LibraryItem","LibraryItemTag","INC_PATH","LibraryItemValue",fullfile(pwd, 'include'));
Simulink.SFunctionBuilder.add(handle,"LibraryItem","LibraryItemTag","SRC_PATH","LibraryItemValue",fullfile(pwd, 'src'));
Simulink.SFunctionBuilder.add(handle,"LibraryItem","LibraryItemTag","ENTRY","LibraryItemValue",'multiply.cpp');

% build s-function
Simulink.SFunctionBuilder.build(handle);

Generating 'cppwrapper.cpp'Please wait
Compiling 'cppwrapper.cpp'Please wait
'cppwrapper.cpp' created successfully
'cppwrapper_wrapper.cpp' created successfully
S-function 'cppwrapper.mexw64' created successfully

The Libraries Table also allows user to specify external shared/static library referenced by custom
code. For more information on how to add external libraries, see Use the Libraries Table to Specify
External Code and Paths.

Note: Shared libraries dependencies in standalone FMU may have symbol clashing, library loading
order conflicts, and data racing issues which result in simulation error.

Export Simulink Model as Standalone FMU

To build and export your model to a standalone FMU, click drop-down button for Save from
Simulation tab and select Standalone FMU.

The figure below shows Export Standalone FMU dialog, user can pack source code into FMU and
generate model harness after export. Read more about the Standalone FMU export functionality:
Export Simulink Model to Standalone FMU.

 Export Standalone FMU with External C++ Code

1-21

https://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#mw_75b93c6f-77c8-4db9-8b32-abfbdbcff5f4
https://www.mathworks.com/help/simulink/sfg/s-function-builder-dialog-box.html#mw_75b93c6f-77c8-4db9-8b32-abfbdbcff5f4
https://www.mathworks.com/help/slcompiler/ug/simulinkfmuexample.html

% Export model to Standalone Co-Simulation FMU 2.0
exportToFMU2CS('FMUExportWithExternalCPP', 'CreateModelAfterGeneratingFMU', 'on');

Setting System Target to FMU Co-Simulation for model 'FMUExportWithExternalCPP'.
Setting Hardware Implementation > Device Type to 'MATLAB Host' for model 'FMUExportWithExternalCPP'.
'GenerateComments' is disabled for Co-Simulation Standalone FMU Export.

Build Summary

Top model targets built:

Model Action Rebuild Reason
==
FMUExportWithExternalCPP Code generated and compiled. Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 15.976s
Model was successfully exported to co-simulation standalone FMU: 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp2a7e4298\simulinkcompiler-ex17580767\FMUExportWithExternalCPP.fmu'.

A standalone FMU is generated in the Destination folder specified from the export dialog. User can
also use Access source code from FMU option to pack source code into FMU package. Please note
that FMU only accepts target landguage to be C in R2022a. Mixed compilng C++ in S-Function

1 Simulink Compiler Getting Started

1-22

Builder block and Simulink model results S-Function Builder block generate wrapper function with C
calling convention ("extern C").

// the following code marks function name in C++ have C linkage
extern "C" {
 void cppwrapper_Start_wrapper(const real_T*, const int_T, void**);
 void cppwrapper_Outputs_wrapper(const real_T*, real_T*, const real_T*, const int_T, void**);
 void cppwrapper_Terminate_wrapper(const real_T*, const int_T, void**);
}

% Close all model
bdclose FMUExportWithExternalCPP;
bdclose FMUExportWithExternalCPP_harness;

 Export Standalone FMU with External C++ Code

1-23

Export Simulink Model with Protected Model and FMU Import
Block to Standalone FMU

This example shows how to export Simulink® model with external references to Standalone FMU. In
this example, the model f14_flight_control demonstrates exporting protected model and FMU
Import block to a Standalone FMU.

Simulink Compiler™ license is required for standalone FMU Export and Simulink Coder™ license is
required to create protected models.

The example consists of three steps:

• Export Simulink Model to Protected Model with FMU Code Generation Capability on page 1-24
• Export Simulink Model to Standalone FMU with Tunable Parameters on page 1-29
• Export Simulink Model with External References to Standalone FMU on page 1-32

Export Simulink Model to Protected Model with FMU Code Generation Capability

In this section, the following steps illustrate how to enable FMU Code Generation capability of a
protected model for FMU export. FMU code generation artifacts must be packed into protected
model before exporting to standalone FMU. Protected model author can use the following steps to
create a protected model with FMU code generation artifacts. Alternatively, protected model author
can add the code generation artifacts to an existing protected model with API
Simulink.ProtectedModel.addTarget. If your protected model does not contain FMU code generation
artifacts, please contact the protected model author. Use
Simulink.ProtectedModel.getSupportedTargets to get a list of targets that protected model supports.

This example opens model Controller, sets system target file to fmu2cs.tlc, and exports model to
protected model.

1 Simulink Compiler Getting Started

1-24

https://www.mathworks.com/help/rtw/ref/simulink.protectedmodel.addtarget.html
https://www.mathworks.com/help/rtw/ref/simulink.protectedmodel.getsupportedtargets.html?s_tid=doc_ta

% Open example model Controller
model = "Controller";
open_system(model);

After the model is opened, go to the configuration dialog and update System target file to
fmu2cs.tlc in Configuration Parameter > Code Generation.

 Export Simulink Model with Protected Model and FMU Import Block to Standalone FMU

1-25

% alternative command-line option to set protected model code generation target to fmu2cs.tlc
% this allows the protected model to be exported as standalone FMU
set_param(model, 'SystemTargetFile', 'fmu2cs.tlc');

Inconsistent hardware implementation of hardware attributes can result in failure when exporting
standalone FMU. To configure these parameters, user can open Configuration Parameter >
Hardware Implementation. Model Controller uses the following setting for code generation. The
same setting is used in model f14_flight_control.

1 Simulink Compiler Getting Started

1-26

Generate Protected Model from Simulation tab and select Save > Protected Model. A dialog box
opens where user can select options for creating a protected model.

To enable code generation for standalone FMU export, check Use Generated Code and select
Obfuscated source code in Content type.

 Export Simulink Model with Protected Model and FMU Import Block to Standalone FMU

1-27

% generate protected model
Simulink.ModelReference.protect(model,'Mode','CodeGeneration','ObfuscateCode',true);

Creating protected model for 'Controller'.
Starting serial model reference simulation build.
Successfully updated the model reference simulation target for: Controller
Starting serial model reference code generation build.
Checking status of model reference code generation target for model 'Controller'.
Model reference code generation target (Controller.c) for model Controller is out of date because Controller.c does not exist.
Setting Hardware Implementation > Device Type to 'MATLAB Host' for model 'Controller'.
Generating code and artifacts to 'Model specific' folder structure
Generating code into build folder: C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tpfce5ef62_6ee9_4af0_b6e3_340db30b285a\slprj\fmu2cs\Controller
Invoking Target Language Compiler on Controller.rtw
Using System Target File: B:\matlab\toolbox\shared\simulink\fmuexport\fmu2cs.tlc
...### Saving binary information cache.
Using toolchain: Microsoft Visual C++ 2019 v16.0 | nmake (64-bit Windows)
Creating 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tpfce5ef62_6ee9_4af0_b6e3_340db30b285a\slprj\fmu2cs\Controller\Controller.mk' ...

1 Simulink Compiler Getting Started

1-28

Building 'Controller_rtwlib': nmake -f Controller.mk all

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tpfce5ef62_6ee9_4af0_b6e3_340db30b285a\slprj\fmu2cs\Controller>set skipSetupArg=skip_setup_msvc

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tpfce5ef62_6ee9_4af0_b6e3_340db30b285a\slprj\fmu2cs\Controller>if "skip_setup_msvc" NEQ "skip_setup_msvc" (call "setup_msvc.bat")

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tpfce5ef62_6ee9_4af0_b6e3_340db30b285a\slprj\fmu2cs\Controller>cd .

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tpfce5ef62_6ee9_4af0_b6e3_340db30b285a\slprj\fmu2cs\Controller>if "all" == "" (nmake -f Controller.mk all) else (nmake -f Controller.mk all)

Microsoft (R) Program Maintenance Utility Version 14.29.30137.0
Copyright (C) Microsoft Corporation. All rights reserved.

 cl -c -nologo -GS -W4 -DWIN32 -D_MT -MT -D_CRT_SECURE_NO_WARNINGS /Od /Oy- -DCLASSIC_INTERFACE=0 -DALLOCATIONFCN=0 -DMAT_FILE=0 -DONESTEPFCN=0 -DTERMFCN=1 -DMULTI_INSTANCE_CODE=0 -DINTEGER_CODE=0 -DMT=0 -DTID01EQ=0 -DMODEL=Controller -DNUMST=1 -DNCSTATES=4 -DHAVESTDIO -DRT -DUSE_RTMODEL @Controller_comp.rsp -Fo"Controller.obj" "C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tpfce5ef62_6ee9_4af0_b6e3_340db30b285a\slprj\fmu2cs\Controller\Controller.c"
Controller.c
Creating static library ".\Controller_rtwlib.lib" ...
 lib /nologo -out:.\Controller_rtwlib.lib @Controller.rsp
Created: .\Controller_rtwlib.lib
Successfully generated all binary outputs.

mathworks\batserve@BAT6234WIN64 C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tpfce5ef62_6ee9_4af0_b6e3_340db30b285a\slprj\fmu2cs\Controller>exit /B 0
Finished creating protected model 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp2a7e4298\simulinkcompiler-ex90564728\Controller.slxp'.

% close model after protected model is generated
close_system(model);

Export Simulink Model to Standalone FMU with Tunable Parameters

This section exports a reference model Aircraft_dynamics_Model as a standalone FMU that will
be used in nested FMU export workflow.

 Export Simulink Model with Protected Model and FMU Import Block to Standalone FMU

1-29

% open model Aircraft_dynamics_Model
model = "Aircraft_Dynamics_Model";
open_system(model);

The figure below shows the Export Standalone FMU dialog. User can manually select model variables
exposed to FMU interface by using Parameter Table under Access the Parameters of FMU... in
FMU export dialog. In this example, we expose variables Md, Mw, Uo, and Zd. Other features like
pack source code, configure model variables, add additional resources to FMU package are available
via UI. Read more about the Standalone FMU export functionality: Export Simulink Model to
Standalone FMU.

Note: You may see a warning message indicating variable names are not unique, too long, or contain
invalid characters and they will be renamed. This is expected if you have variable names meet above
conditions, and you will see the renamed variables when you import the FMU back to a FMU block.

1 Simulink Compiler Getting Started

1-30

https://www.mathworks.com/help/slcompiler/ug/simulinkfmuexample.html
https://www.mathworks.com/help/slcompiler/ug/simulinkfmuexample.html

% export model Aircraft dynamics to standalone FMU
exportToFMU2CS(model,'CreateModelAfterGeneratingFMU', 'off');

 Export Simulink Model with Protected Model and FMU Import Block to Standalone FMU

1-31

Setting System Target to FMU Co-Simulation for model 'Aircraft_Dynamics_Model'.
Setting Hardware Implementation > Device Type to 'MATLAB Host' for model 'Aircraft_Dynamics_Model'.
'GenerateComments' is disabled for Co-Simulation Standalone FMU Export.

Warning: The following variable names are not unique, too long, or contain invalid characters: 'Elevator
Deflection
d (deg),Vertical Gust
wGust (ft/sec),Rotary Gust
qGust (rad/sec),Vertical Velocity
w (ft/sec),Pitch Rate
q (rad/sec)'. They will be renamed to: 'ElevatorDeflectionD_deg_,VerticalGustWGust_ft_sec_,RotaryGustQGust_rad_sec_,VerticalVelocityW_ft_sec_,PitchRateQ_rad_sec_'.

Build Summary

Top model targets built:

Model Action Rebuild Reason
===
Aircraft_Dynamics_Model Code generated and compiled. Code generation information file does not exist.

1 of 1 models built (0 models already up to date)
Build duration: 0h 0m 14.827s
Model was successfully exported to co-simulation standalone FMU: 'C:\TEMP\Bdoc23a_2213998_3568\ib570499\0\tp2a7e4298\simulinkcompiler-ex90564728\Aircraft_Dynamics_Model.fmu'.

close_system(model);

Export Simulink Model with External References to Standalone FMU

This section illustrates how to export Simulink model f14_flight_control with external
references to a Standalone FMU with tunable parameters. Model f14_flight_control uses the
protected model and FMU generated in the previous step, Model block Controller references the
protected model Controller.slxp, and FMU Import block Aircraft Dynamics Model
references Aircraft_Dynamics_Model.fmu.

1 Simulink Compiler Getting Started

1-32

% open top model that reference the protected model and FMU
model = "f14_flight_control";
open_system(model);

Open FMU Import Block dialog and configure tunable parameter to be exported in the nested FMU.
Parameters Md, Mw, Uo, Zd are Simulink.Parameter objects defined in model workspace.

 Export Simulink Model with Protected Model and FMU Import Block to Standalone FMU

1-33

% Associate parameter in FMU export dialog with model variables
% This allows the variables to be export as tunable parameter in the generated nested FMU
set('f14_flight_control/Aircraft Dynamics Model','Md', 'Md');
set('f14_flight_control/Aircraft Dynamics Model','Mw', 'Mw');
set('f14_flight_control/Aircraft Dynamics Model','Uo', 'Uo');
set('f14_flight_control/Aircraft Dynamics Model','Zd', 'Zd');

To build and export model f14_flight_control to a standalone FMU, click drop-down button for
Save from Simulation tab and select Standalone FMU. Follow the export procedure as described in
previous section.

% Export model to Standalone Co-Simulation FMU 2.0
exportToFMU2CS(model,'CreateModelAfterGeneratingFMU', 'on');

A standalone FMU is generated in the Destination folder specified from the export dialog. A harness
model is created and opened if the user selects Create model after generating standalone FMU.

1 Simulink Compiler Getting Started

1-34

 Export Simulink Model with Protected Model and FMU Import Block to Standalone FMU

1-35

close_system(model);

1 Simulink Compiler Getting Started

1-36

Export Simulink Model to Standalone FMU with User Specified
Files and Archived Project with Harness Model

This example shows how to export Simulink® component to standalone Co-Simulation FMU 2.0 with
user specified documentation and harness model using Simulink Compiler™. This example
demonstrate following features of Standalone FMU Export:

• User file packing.
• Archived project generation with harness model.

You may want too add files in the generated Standalone FMU for the following scenarios:

• FMU requires documentation and/or license information
• FMU needs additional files to determine its initial states
• FMU requires additional meta-data information for compliance.

Similarly, you may want to generated archived project with harness model for:

• Cross team collaboration for System Design in Simulink
• SIL and functional testing using Simulink Test™.

This example exports fmuexport_fuelsys_controller to standalone FMU with specified
documentation. The documentation is in form of index.html with supporting image files inside
images folders. This documentation outlines the behavior of component modeled using standalone
FMU. The archived project generated can be shared for reuse in Simulink. For a detailed explanation
of the model, see:

• “Model a Fault-Tolerant Fuel Control System”

In this example, the air-fuel ratio control system is composed of three Simulink models:

• Fuel Rate Control Component: fmuexport_fuelsys_controller,
• Engine Gas Dynamics Component: fmuexport_fuelsys_plant, and
• top-level model fmuexport_fuelsys_top.

For a list of tools that support FMI, see: https://fmi-standard.org/tools/.

Export Fuel Rate Control Component to FMU with User Specified Documentation

Open the fmuexport_fuelsys_controller example model.

open_system('fmuexport_fuelsys_controller');

 Export Simulink Model to Standalone FMU with User Specified Files and Archived Project with Harness Model

1-37

https://fmi-standard.org/tools/

From Simulation tab, click drop-down button for Save. In Export Model To section, click
Standalone FMU.... In FMU Export dialog, click Access Additional Resource to expand the section
for adding user specified files

1 Simulink Compiler Getting Started

1-38

Click Add File to add index.html in DocumentFiles folder

 Export Simulink Model to Standalone FMU with User Specified Files and Archived Project with Harness Model

1-39

1 Simulink Compiler Getting Started

1-40

Click the dropdown associated with Add File and select Add Folder to add images folder inside
DocumentFiles

 Export Simulink Model to Standalone FMU with User Specified Files and Archived Project with Harness Model

1-41

1 Simulink Compiler Getting Started

1-42

Click Select All button to select the entries in the spreadsheet. Click one of the rows under
Destination column and update the destination to documentation

 Export Simulink Model to Standalone FMU with User Specified Files and Archived Project with Harness Model

1-43

Click Create button to export standalone FMU for Fuel Rate Control Component

1 Simulink Compiler Getting Started

1-44

After FMU is generated, unzip the generated FMU and notice the presence of index.html and
images folder under documentation

restoreval = get_param(0,'AutoSaveOptions');
newval = restoreval;
% Disable auto save
newval.SaveOnModelUpdate = false;
set_param(0,'AutoSaveOptions',newval);
restoreOC = onCleanup(@()set_param(0,'AutoSaveOptions',restoreval));
% Export Simulink model to Standalone Co-Simulation FMU 2.0
evalc('exportToFMU2CS(''fmuexport_fuelsys_controller'', ''Package'', {''documentation'',{fullfile(pwd,''DocumentFiles'',''index.html''),fullfile(pwd,''DocumentFiles'',''images'')}},''ExportedContent'',''project'',''AddIcon'',''off'')');
restoreOC.delete;
close_system('fmuexport_fuelsys_controller', 0);

You can also export FMU and archived project using command-line. At the MATLAB® command line,
use exportToFMU2CS command.

% Export model to Standalone Co-Simulation FMU 2.0 with user specified
% file
exportToFMU2CS('fmuexport_fuelsys_controller', 'Package', {'documentation',{fullfile(pwd,'DocumentFiles','index.html'),fullfile(pwd,'DocumentFiles','images')}},'ExportedContent','project');

You can use optional arguments ProjectName, AddIcon, and SaveDirectory to configure FMU
export settings. For more information, call help ExportToFMU2CS.

Integrate Standalone FMU with Simulink Model

Once the FMU is successfully exported, you may use the top model fmuexport_fuelsys_top to
fully integrate the system for testing.

clear Atm PumpCon RampRateKiZ SpeedVect max_press min_press p0 st_range ...
 PressEst RampRateKiX SonicFlow ThrotEst hys max_speed min_speed ...
 restoreOC zero_thresh PressVect RampRateKiY SpeedEst ThrotVect ...
 max_ego max_throt min_throt s;
open_system('fmuexport_fuelsys_top');

 Export Simulink Model to Standalone FMU with User Specified Files and Archived Project with Harness Model

1-45

1 Simulink Compiler Getting Started

1-46

In the fmuexport_fuelsys_top, you can open the documentation file packed in the FMU by
launching the block dialog for Fuel Rate Control and clicking Open FMU Documentation File.

set_param('fmuexport_fuelsys_top', 'SimulationCommand', 'Update');
set_param('fmuexport_fuelsys_top', 'StopTime', '16');
sim('fmuexport_fuelsys_top');

 Export Simulink Model to Standalone FMU with User Specified Files and Archived Project with Harness Model

1-47

bdclose('fmuexport_fuelsys_top');
clear ans sldemo_fuelsys_output;

The generated simulation result might be slightly different than “Model a Fault-Tolerant Fuel Control
System”. This is expected, for more information see, “Co-Simulation Execution”

Integrate Harness Model in Archived Project with Simulink Model

You may also integrate the harness model inside the archived project in
fmuexport_fuelsys_top_harness_model by unzipping
fmuexport_fuelsys_controller_fmu.mlproj archived project file in the current directory and
executing the following command in the MATLAB command window.

%% Script to simulate the extracted harness model in Simulink
open_system('fmuexport_fuelsys_top_harness_model');
set_param('fmuexport_fuelsys_top_harness_model', 'SimulationCommand', 'Update');
set_param('fmuexport_fuelsys_top_harness_model', 'StopTime', '16');
sim('fmuexport_fuelsys_top_harness_model');

You can also use the harness model for functional verification in Simulink. For more information, see
“Create Test Harnesses from Standalone Models” (Simulink Test).

1 Simulink Compiler Getting Started

1-48

Export Simulink Model to Standalone FMU with Source Code

This example shows how to export Simulink® component to standalone Co-Simulation FMU 2.0 with
source code using Simulink Compiler™ and Simulink Coder™. The source code is packed inside the
sources folder of the Standalone FMU. A documentation file, index.html is also generated. It lists
the steps to regenerate the binaries on another platform. This documentation file is located inside
documentation folder of the Standalone FMU. The source code can be used for cross platform
workflow.

A user may desire to export Simulink component to standalone FMU with source code for the
following scenarios:

• Cross-platform FMU support.
• Hardware-in-Loop (HIL) simulation.

In this example, the aircraft flight control system is composed of two simulink models:

• Aircraft Longitudinal Flight Control Plant Component:
fmuexport_aircraft_flight_control_plant and

• Top-level model: fmuexport_aircraft_flight_control_top.

fmuexport_aircraft_flight_control_plant models flight control for the longitudinal motion
of an aircraft. First order linear approximations of the aircraft and actuator behavior are connected to
an analog flight control design that uses the pilot's stick pitch command as the set point for the
aircraft's pitch attitude and uses aircraft pitch angle along with pitch rate to determine commands. A
simplified Dryden wind gust model is incorporated to perturb the system.

fmuexport_aircraft_flight_control_top is used to observe the change in the angle of attack
reported by Aircraft Longitudinal Flight Control Plant Component with respect to the applied pilot's
stick pitch command.

This examples exports fmuexport_aircraft_flight_control_plant to Standalone Co-
Simulation FMU 2.0 with source code and list steps to compile the source code on 64-bit Linux®
platform to generate binaries for reuse in fmuexport_aircraft_flight_control_top. For a list
of tools that support FMI, see: https://fmi-standard.org/tools/.

Export Aircraft Longitudinal Flight Control Plant Component to FMU with Source Code

Open the fmuexport_aircraft_flight_control_plant example model.

open_system('fmuexport_aircraft_flight_control_plant');

 Export Simulink Model to Standalone FMU with Source Code

1-49

https://fmi-standard.org/tools/

From Simulation tab, click drop-down button for Save. In Export Model To section, click
Standalone FMU.... In FMU Export dialog, check the Access Source Code from FMU, configure
wrapper model and icon settings, and specify save location for generated FMU.

1 Simulink Compiler Getting Started

1-50

Click Create to export to FMU. The fmuexport_aircraft_flight_control_plant.fmu file can
be found at specified save location.

restoreval = get_param(0,'AutoSaveOptions');
newval = restoreval;
newval.SaveOnModelUpdate = false;
set_param(0,'AutoSaveOptions',newval);
restoreOC = onCleanup(@()set_param(0,'AutoSaveOptions',restoreval));
% Export model to Standalone Co-Simulation FMU 2.0 with source code
evalc('exportToFMU2CS(''fmuexport_aircraft_flight_control_plant'',''SaveDirectory'', pwd, ''SaveSourceCodeToFMU'', ''on'',''AddIcon'',''off'')');
restoreOC.delete;
close_system('fmuexport_aircraft_flight_control_plant', 0);

FMU can also be exported with source code using command-line. In the MATLAB® command-line
window, use exportToFMU2CS command:

% Export model to Standalone Co-Simulation FMU 2.0
exportToFMU2CS('fmuexport_aircraft_flight_control_plant', 'SaveDirectory', pwd, 'SaveSourceCodeToFMU', 'on');

You can use optional arguments CreateModelAfterGeneratingFMU, AddIcon, and SaveDirectory
to configure FMU export settings. For more information, call help ExportToFMU2CS.

The generated standalone Co-Simulation FMU 2.0 has source code in the sources folder inside the
FMU

 Export Simulink Model to Standalone FMU with Source Code

1-51

A documentation file(index.html) is also generated with steps to regenerate the binaries on Linux,
Windows® and macOS platform. This documentation file is located at documentation/index.html

1 Simulink Compiler Getting Started

1-52

Integrate FMU Components in Simulink

Once the FMU is successfully exported, you may use the top model
fmuexport_aircraft_flight_control_top to fully integrate the system for testing.

open_system('fmuexport_aircraft_flight_control_top');
set_param('fmuexport_aircraft_flight_control_top', 'SimulationCommand', 'Update');
sim('fmuexport_aircraft_flight_control_top');

 Export Simulink Model to Standalone FMU with Source Code

1-53

1 Simulink Compiler Getting Started

1-54

close_system('fmuexport_aircraft_flight_control_top', 0);

The generated simulation result might be slightly different than simulation results observed for
fmuexport_aircraft_flight_control_plant model in Simulink. This is expected, for more
information refer to “Co-Simulation Execution”

Reuse the Standalone Co-Simulation FMU with Source Code for Cross Platform Workflow

Users can reuse the standalone co-simulation FMU with source code on another platform by
regenerating the binaries and packing the generated binaries in the FMU. Given below are the steps
to reuse the FMU on another platform.

1. Unzip the standalone co-simulation FMU with source code and compile the source code to
generate the platform specific binary files.

%Example
gcc -I<directoryWithFMUHeader> -I<directoryWithSourceCode> -c fmuexport_aircraft_flight_control_plant.c fmuexport_aircraft_flight_control_plant_data.c rtGetInf.c rtGetNaN.c rt_nonfinite.c RTWCG_FMU_util.c fmuexport_aircraft_flight_control_plant_fmu.c -fPIC
gcc -shared -o fmuexport_aircraft_flight_control_plant.so fmuexport_aircraft_flight_control_plant.o fmuexport_aircraft_flight_control_plant_data.o rtGetInf.o rtGetNaN.o rt_nonfinite.o RTWCG_FMU_util.o fmuexport_aircraft_flight_control_plant_fmu.o -lm

2. Move the generated binary file in the binaries folder.

 Export Simulink Model to Standalone FMU with Source Code

1-55

% Example of folder structure when binaries were packed in FMU on 64-bit
% Linux platform

3. Repackage the files in FMU for cross-platform use

1 Simulink Compiler Getting Started

1-56

	Simulink Compiler Getting Started
	Simulink Compiler Product Description
	Simulink Compiler Workflow Overview
	Simulation Pacing in Rapid Accelerator Mode

	Toolboxes Supported by Simulink Compiler
	Create and Deploy a Script with Simulink Compiler
	Prepare the Model
	Write the Script to Deploy
	Compile Script for Deployment
	Run the Deployed Script

	Export Simulink Models to Functional Mock-up Units
	Export Models
	Export a Simulink Model
	Examples For Different Workflows

	Export Standalone FMU with External C++ Code
	Export Simulink Model with Protected Model and FMU Import Block to Standalone FMU
	Export Simulink Model to Standalone FMU with User Specified Files and Archived Project with Harness Model
	Export Simulink Model to Standalone FMU with Source Code

